试题

题目:
青果学院如图,在等边△ABC中,AC=9,点O在AC上,且AO=4,点P是AB上一动点,连结OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是(  )



答案
B
解:∵AC=9,AO=4,
∴OC=5,
∵△ABC为等边三角形,
∴∠A=∠C=60°,
∵线段OP绕点D逆时针旋转60゜得到线段OD,要使点D恰好落在BC上,
∴OD=OP,∠POD=60°,
∵∠AOP+∠APO+∠A=180°,∠AOP+∠COD+∠POD=180°,
∴∠AOP+∠APO=120°,∠AOP+∠COD=120°,
∴∠APO=∠COD,
在△AOP和△CDO中,
∠A=∠C
∠APO=∠COD
OP=OD

∴△AOP≌△CDO(AAS),
∴AP=CO=5.
故选B.
考点梳理
全等三角形的判定与性质;等边三角形的性质.
根据AC=9,AO=4,求出OC=5,再根据等边三角形的性质得∠A=∠C=60°,再根据旋转的性质得OD=OP,∠POD=60°,根据三角形内角和和平角定义得∠AOP+∠APO+∠A=180°,∠AOP+∠COD+∠POD=180°,利用等量代换可得∠APO=∠COD,然后证出△AOP≌△CDO,得出AP=CO=5.
本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质,熟练掌握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是本题的关键.
找相似题