试题
题目:
以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第四个正三角形的边长是( )
A.3×
(
2
2
)
厘米
B.
3
2
厘米
C.
3
3
8
厘米
D.3×
(
1
2
)
厘米
答案
C
解:∵△ABC是正三角形
∵AB=AC=BC=2
∴AD=
2
2
-
1
2
=
3
∴
AD
AB
=
3
2
∴第4个正三角形的边长是第一个正三角形的
(
3
2
)
3
倍=
3
3
8
答案为:
3
3
8
,
故选C.
考点梳理
考点
分析
点评
专题
等边三角形的性质.
根据正三角形的三线合一以及勾股定理,得正三角形的高是边长的
3
2
倍.以此类推,则第4个正三角形的边长是第一个正三角形的
(
3
2
)
3
倍.
熟练运用勾股定理和等腰三角形的三线合一性质找到等边三角形的高和边长之间的关系,进一步推而广之.
压轴题;规律型.
找相似题
如图,△ABC是边长为6cm的等边三角形,BD是中线,延长BC至E点,使CE=CD.
求:(1)CE的长;(2)∠E的度数.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
如图,点M,N分别是等边△ABC边AB,CA的延长线上的点,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
求证:NC=BM+MN.
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.