题目:
阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r
1,r
2,腰上的高为h,连接AP,则S
△ABP+S
△ACP=S
△ABC,即:
AB·r1+AC·r2=AB·h,∴r
1+r
2=h(定值).
(1)类比与推理
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r
1,r
2,r
3,等边△ABC的高为h,试证明r
1+r
2+r
3=h(定值).
(2)理解与应用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?
存在
存在
(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=
2
2
.若不存在,请说明理由.