试题
题目:
(1)如图①、图②,△ABC是等边三角形,点M是边BC上任意一点,N是BA上任意一点,且BN=CM,AM与CN相交于Q,先用量角器测量图①、图②中∠CQM的度数,并用图②证明你的猜想.
猜想:∠CQM=
60
60
度.
证明:
(2)如图3,若M是CB延长线上一点,N是BA延长线上一点,仍然满足△ABC为等边三角形,CM=BN,相交于Q,则(1)中猜想还成立吗?若成立,请证明;若不成立,请说明理由.
答案
60
解:(1)∠CQM为60度,
理由:∵△ABC是等边三角形,
∴AB=BC=AC,∠B=∠CAN=60°,
∵BN=CM,
∴AN=BM,
∴△ABM≌△CAN,
∴∠QCA=∠BAM,
∵∠CQM=∠QAC+∠QCA,
∴∠CQM=∠QAC+∠QCA=∠QAC+∠BAM=∠BAC=60°;
(2)成立,
理由:∵△ABC是等边三角形,
∴AB=BC=AC,∠ABC=∠ACB=60°,
∵CM=BN,
∴△BNC≌△CMQ,
∴∠N=∠M,
∵∠CQM=∠N+∠NAQ,
∴∠CQA=∠M+∠MAB=∠ABC=60°.
考点梳理
考点
分析
点评
等边三角形的性质;全等三角形的判定与性质.
(1)∠CQM为60度,由题不难得△ABM≌△CAN,由∠CQM为△AQM的外角,得∠CQM=∠QAC+∠QCA,因为∠QCA=∠BAM,推出∠CQM=∠QAC+∠QCA=∠QAC+∠BAM=∠BAC=60°;
(2)猜想还成立,根据已知即可推出△BNC≌△CMQ,推出∠N=∠M,由∠CQM=∠N+∠NAQ,通过等量代换即可推出结论.
本题主要考查等边三角形的性质、全等三角形的判定和性质,关键在于求证相关三角形全等.
找相似题
如图,△ABC是边长为6cm的等边三角形,BD是中线,延长BC至E点,使CE=CD.
求:(1)CE的长;(2)∠E的度数.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
如图,点M,N分别是等边△ABC边AB,CA的延长线上的点,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
求证:NC=BM+MN.
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.