数学
如图,已知矩形ABCD中AB:BC=3:1,点A、B在x轴上,直线y=mx+n(m<n<
1
2
且n≠0),过点A、C交y轴于点E,S
△AOE
=
9
8
S
矩形ABCD
,抛
物线y=ax
2
+bx+c过点A、B,且顶点G在直线y=mx+n上,抛物线与y轴交于点F.
(1)求点A、B的坐标(用n表示);
(2)求代数式abc的值;
(3)求S
△AGF
的范围.
如图,已知抛物线y=-x
2
+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S
△BOC
=
9
2
.
(1)求抛物线和直线BC的函数解析式;
(2)设P直线BC上的动点、Q是抛物线上的动点.问:是否存在以C、P、Q为顶点的三角形,使得它与△BOC相似?若存在,请直接写出线段PQ的长;若不存在,请说明理由;
(3)在上述条件下,把直线BC绕C旋转.当直线与抛物线只有一个公共点时,求OP的最小值.
如图,在矩形OABC中,已知A,C两点的坐标分别为A(4,0),C(0,2),点D
是OA的中点;设点P是∠AOC平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC与PD总相等;
(2)当点P运动到与点B的距离最小时,试确定过O,P,D三点的抛物线的解析式;
(3)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请写出P点的坐标;若不存在,请说明理由.
平面直角坐标系中的梯形AOBC各顶点的坐标是A(0,4)、B(6,0)、C(4,4),过O、B、C三点的抛物线交AC于D,点P从O点出发,以每秒3个单位长度的速度向B运动,点Q同时从C出发,以每秒1个单位长度的速度
向D运动.过Q作QM⊥AC交BD于M,连接PM.设运动时间为t秒(0≤t≤2)
(1)求直线BC的解析式;
(2)求D点的坐标;
(3)以P、Q、M为顶点的图形的面积为S,求S关于t的函数关系式;
(4)当t为何值时,△PBM是直角三角形?直接写出t的值.
已知函数y=x
2
+bx+c的图象经过A(3,4)和B(2,0)两点.
(1)求函数的解析式及顶点M的坐标;
(2)设点N为线段BM上一点,过点N作x轴的垂线,垂足为Q,当点N在线段BM上运动时(点N不与点B重合),设NQ的长为t,四边形NQAC(C为抛物线与y轴的交点)的面积为S,求S与t之间的函数关系,并求自变量t的取值范围.
已知:抛物线y=ax
2
+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C
在y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x
2
-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE.当△CEF的面积最大时,求点E的坐标,并求此时面积的最大值;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点Q,点D的坐标为(-3,0).问:是否存在这样的直线l,使得△ODQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,已知顶点为P的抛物线
y=
1
2
x
2
+bx+c
经过点A(-3,6),并x轴交于B(-1,0),C两点.
(1)求此抛物线的解析式;
(2)求四边形ABPC的面S;
(3)试判断四边形ABPC的形状,并说明理由.
抛物线
y=
1
2
(x+1
)
2
-2
,
(1)设此抛物线与x轴交点为A、B(A在B的左边),请你求出A、B两点的坐标;
(2)有一条直线y=x-1,试利用图象法求出该直线与抛物线的交点坐标;
(3)P是抛物线上的一个动点,问是否存在一点P,使S
△ABP
=4,若存在,则有几个这样的点P,并写出它们的坐标.
将矩形OABC如图放置在平面直角坐标系中,OA=4,OC=2,两条对角线交于点P,且点
P为抛物线y=(x-a)
2
+b的顶点.
(1)求a、b的值;
(2)抛物线交BC于点D、E,求线段DE的长.
如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=4,BC=6,AB=3,以BC为x轴,AB为y轴,建立平面直角坐标系xoy.
(1)求过A,C,D三点的抛物线的解析式;
(2)如果一动点P由B点开始沿BC边以1个单位长度/s的速度向点c移动,连接DP,作射线PE⊥DP,PE与直线AB交于点E,当点P移动到第t秒时,点E与点B的距离为s;
①试写出s与t的函数关系式,并写出t的取值范围;
②s是否存在最大值?若存在,直接写出这个最大值,并求出这时PE所在直
线的解析式;若不存在,说明理由.
第一页
上一页
35
36
37
38
39
下一页
最后一页
937636
937637
937638
937639
937640
937641
937642
937643
937644
937645