数学
(2004·包头)某农场计划建一个养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长为28米),另外的部分用竹篱笆围成.
(1)若用长为50米的竹篱笆围成面积为300米
2
的矩形养鸡场(如图1),设矩形的长为y米,宽为x米,求x和y的值;
(2)若用长为30米的竹篱笆围成矩形(如图1)或半圆形(如图2)养鸡场,设矩形的面积为S
1
米
2
、长为y米、宽为x米,半圆形的面积为S
2
米
2
、半径为r米,试比较S
1
和S
2
的大小.(取π≈3)
(2004·河北)如图1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:
x/m
5
10
20
30
40
50
y/m
0.125
0.5
2
4.5
8
12.5
(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图2所示的坐标系中画出y关于x的函数图象;
(2)①填写下表:
x
5
10
20
30
40
50
x
2
y
②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数的表达式:
y=
1
200
x
2
y=
1
200
x
2
;
(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?
(2004·黄冈)心理学家研究发现,一般情况下,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力y随时间t(分钟)的变化规律有如下关系式:y=
-
t
2
+24t+100(0<t≤10)
240(10<t≤20)
-7t+380(20<t≤40)
(y值越大表示接受能力越强)
(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中;
(2)讲课开始后多少分钟,学生的注意力最集中能持续多少分钟;
(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
(2004·盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从2004年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=
1
4
(n
2
+3n)(1≤n≤6,n是整数).
(1)根据题中信息填写下表:
第一个月的销售量
(百台)
前两个月的销售量
(百台)
第二个月的销售量
(百台)
前三个月的销售量
(百台)
第三个月的销售量
(百台)
(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.
(2004·云南)某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示),其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.
(1)设矩形的边长AB=x(米),AM=y(米),用含x的代数式表示y;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于x的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.
(2005·长春)一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at
2
,第10秒末开始匀
速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at
2
的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:
5
≈2.24,
6
≈2.45,计算结果保留两个有效数字.)
(2005·恩施州)路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米.下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.
(2005·河北)某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y与x之间的二次函数关系式;
(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(4)请把(2)中所求出的二次函数配方成y=a(x+
b
2a
)
2
+
4ac-
b
2
4a
的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?
(2005·吉林)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立
起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.
(2005·茂名)如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,
然后把它折成一个无盖的长方体,设长方体的容积为Vcm
3
,请回答下列问题:
(1)若用含有X的代数式表示V,则V=
x(16-2x)
2
x(16-2x)
2
;
(2)完成下表:
(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?
第一页
上一页
119
120
121
122
123
下一页
最后一页
955918
955919
955920
955921
955922
955923
955924
955925
955926
955927