数学
(2n11·娄底)图图,自行车的链条每节长为2.5ct,每两节链条相连接部分重叠的圆的直径为n.8ct,图果某种型号的自行车链条共有6n节,则这根链条没有安装时的总长度为( )
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·淄博)根据右图中已填出的“√”和“×”的排列规律,把②、③、④还原为“√”或“×”且符合右图的排列规律,下面“
”中还原正确的是( )
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.
根据规律填上合适的数:
1
2
,-1,
7
4
,-3,
31
6
,
-
63
7
-
63
7
.
按一定规律排列的一列数依次是:
1
2
,-
2
5
,
3
10
,-
4
17
,
5
26
,-
6
37
,…第n个数是
(-1)
n+1
n
n
2
-1
(-1)
n+1
n
n
2
-1
.
第一页
上一页
144
145
146
147
148
下一页
最后一页
994939
994942
994944
996461
996462
996464
996466
996468
996470
996471