数学
如图,△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.
(1)当点D在线段BC上时(如图1),求证:DC+CE=
2
AC;
(2)当点D在线段CB延长线上时(如图2);当点D在线段BC延长线上时(如图3),探究线段DC、CE、AC之间的数量关系分别为,图2:
DC-CE=
2
AC
DC-CE=
2
AC
; 图3:
CE-DC=
2
AC
CE-DC=
2
AC
;
在Rt△ABC中,∠ACB=90°,AB=4,D为AB的中点,将一直角△DEF纸片平放在△ACB所在的平面上,且使直角顶点重合于点D(C始终在△DEF内部),设纸片的两直角边分别与AC、BC相交于M、N.
(1)如图1,当∠A=∠NDB=45°,则CN+CM等于
2
2
2
2
;
(2)探索,如图2,当∠A=45°,∠NDB≠45°时,则CN+CM的值是否与(1)相同?说明理由.
(2006·咸宁)如图,△ABC中,∠ACB=90°,AC=BC,CO为中线.现将一直角三角板的直角顶点放在点O上并绕点O旋转,若三角板的两直角边分别交AC,CB的延长线于点G,H.
(1)试写出图中除AC=BC,OA=OB=OC外其他所有相等的线段;
(2)请任选一组你写出的相等线段给予证明.
我选择证明
CG
CG
=
BH
BH
.
(2007·临沂)如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
(2012·淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10
2
,AB=20.求∠A的度数.
(2013·荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.
(2013·牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=
2
CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.
又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=
2
CB.
又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=
2
CB.
(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=
2
时,则CD=
3
+1
3
+1
,CB=
2
2
.
如图,等腰直角三角形ABD,点C是直角边AD上的动点,连接CB.现在将点C绕点A逆时针方向旋转90°得点E,再将点C绕点B顺时针方向旋转90°得点F.如果
AD=BD=
2
,设△AED,△BFD,△ABC的面积分别为S
1
,S
2
,S
3
,那么S
1
+S
2
-S
3
=
1
1
.
等腰△ABC中一腰上的高线长为1.这个高与底边夹角为45°,则△ABC的面积是
1
2
1
2
.
如图,两条河交汇于O点,夹75°角,旅行家住在P点,离O点200m,离河岸AO100cm.他希望到AO上任一点处欣赏风光,再折到河岸BO上任一点D处眺望景物,然后回到住地,则旅行家最少要走
386
386
m路程(答准确数值)
第一页
上一页
5
6
7
8
9
下一页
最后一页
963652
963653
963654
963655
963656
963657
963658
963659
963660
963661