试题

题目:
在Rt△ABC中,∠ACB=90°,AB=4,D为AB的中点,将一直角△DEF纸片平放在△ACB所在的平面上,且使直角顶点重合于点D(C始终在△DEF内部),设纸片的两直角边分别与AC、BC相交于M、N.
(1)如图1,当∠A=∠NDB=45°,则CN+CM等于
2
2
2
2

(2)探索,如图2,当∠A=45°,∠NDB≠45°时,则CN+CM的值是否与(1)相同?说明理由.
青果学院
答案
2
2

解:(1)连CD,如图,
∵∠ACB=90°,∠A=45°,
∴△ABC是等腰直角三角形,
∴AC=
2
2
AB=2
2

而D点为斜边的中点,
∴CD=DA,∠DCB=
1
2
∠ACB=45°,∠CDA=90°
∵∠MDN=90°,
∴∠CDA-∠CDM=∠MDN-∠CDM,
∴∠ADM=∠CDN,
青果学院在△ADM和△CDN中,
∠A=∠DCN
AD=CD
∠ADM=∠CDN

∴△ADM≌△CDN,
∴AM=CN,
∴CM+CN=CM+AM=AC=2
2


(2)CN+CM的值仍然等于2
2
.理由如下:
连CD,如图2,
∵∠ACB=90°,∠A=45°,
∴△ABC是等腰直角三角形,
∴AC=
2
2
AB=2
2

青果学院而D点为斜边的中点,
∴CD=DA,∠DCB=
1
2
∠ACB=45°,∠CDA=90°
∵∠MDN=90°,
∴∠CDA-∠CDM=∠MDN-∠CDM,
∴∠ADM=∠CDN,
在△ADM和△CDN中,
∠A=∠DCN
AD=CD
∠ADM=∠CDN

∴△ADM≌△CDN,
∴AM=CN,
∴CM+CN=CM+AM=AC=2
2
考点梳理
全等三角形的判定与性质;等腰直角三角形.
(1)连CD,由于∠ACB=90°,∠A=45°,可得到△ABC是等腰直角三角形,根据等腰直角三角形的性质得AC=
2
2
AB=2
2
,而D点为斜边的中点,根据等腰直角三角形斜边上的中线性质得CD=DA,∠DCB=
1
2
∠ACB=45°,∠CDA=90°,利用等角的余角相等得到∠ADM=∠CDN,根据三角形全等的判定方法可证得△ADM≌△CDN,则AM=CN,于是CM+CN=CM+AM=AC=2
2

(2)与(1)的解法一样可得到CN+CM的值仍然是2
2
本题考查了全等三角形的判定与性质:有两组角对应相等,且它们所夹的边也相等的两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的性质.
找相似题