数学
直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求直线BC的解析式;
(2)直线EF:y=2x-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S
△EBD
=S
△FBD
?若存在,求出k的值;若不存在,说明理由;
(3)如图,P为A点右侧x轴上一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标,如果变化,请说明理由.
如图,一次函数
y=-
2
3
x+2
的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.
直线y=x-2分别交x轴、y轴于A、B两点,原点为O
(1)求△AOB的面积;
(2)求O到直线y=x-2的距离;
(3)是否存在过△AOB的顶点的直线L,把△AOB分成面积相等的两部分,若存在,写出直线L的解析式.
已知A(-1,0),B(0,-3),点C与点A关于坐标原点对称,经过点C的直线与y轴交于点D,与直线AB交于点E,且E点在第二象限.
(1)求直线AB的解析式;
(2)若点D(0,1),过点B作BF⊥CD于F,连接BC,求∠DBF的度数及△BCE的面积;
(3)若点G(G不与C重合)是动直线CD上一点,且BG=BA,试探究∠ABG与∠ACE之间满足的等量关系,并加以证明.
已知:如图,直线y=kx+b与x轴、y轴分别交于点A、B两点,OA=OB=1,动点P在线段AB上移动,以P为顶点作∠OPQ=45°,射线PQ交x轴于点Q.
(1)求直线AB的解析式.
(2)△OPQ能否是等腰三角形?如果能,请求出点P的坐标;若不能,请说明理由.
(3)无论m为何值,(2)中求出的P点是否始终在直线
y=mx+
1-m
2
(m≠0)上?请说明理由.
如图,以O为端点的射线OA所在直线的函数关系式为y=
3
4
x(x≥0),射线OA上有一点M(8,y),另一点P从O点出发沿射线OA方向以每秒1个单位长度的速度运动,设运动时间为t秒,∠AOx=α.
(1)求y以及sinα、cosα的值;
(2)用含t的代数式表示点P的坐标.
已知一次函数y=kx+b的图象经过两点A(3,2),B(1,-2).
(1)求这个一次函数的解析式,并在给出的直角坐标系中画出图象;
(2)求△ABO的面积;
(3)y轴上是否存在一点P,使S
△AOB
=S
△AOP
?如果存在,请求出点P的坐标,如果不存在,请说明理由.
已知四边形OABC是边长为4的正方形,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A、C两点.
(1)求直线l的函数表达式;
(2)若P是直线l上的一个动点,请直接写出当△OPA是等腰三角形时点P的坐标;
(3)如图2,若点D是OC的中点,E是直线l上的
一个动点,求使OE+DE取得最小值时点E的坐标.
如图,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x
2
-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM并延长交x轴于N.
(1)求⊙M的半径.
(2)求线段AC的长.
(3)若D为OA的中点,求证:CD是⊙M的切线.
如图,一次函数y=-2x+2的图象与与坐标轴相交于A、B两点,点P(x,y)是线段AB(不含端点)
上一动点,设△AOP的面积为S.
(1)求点B的坐标;
(2)求S关于x的函数关系式,并写出自变量x的取值范围;
(3)当S=
1
2
时,试问在x轴上是否存在一点Q,使得PQ+BQ最小?若存在,求出点Q的坐标,若不存在,请说明理由.
第一页
上一页
165
166
167
168
169
下一页
最后一页
1352284
1352286
1352289
1352292
1352294
1352296
1352299
1352301
1352304
1352308