数学
如图,在等腰三角形ABC中,底边BC=8cm,腰长为5cm,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角坐标系.
(1)直接写出点A,B,C的坐标.
(2)一动点P以0.25cm/s的速度沿底边从点B向点C运动(P点不运动到C点),
设点P运动的时间为t(单位:s).
①写出△APC的面积S关于t的函数解析式,并写出自变量t的取值范围.
②当t为何值时,△APB为等腰三角形?并写出此时点P的坐标.
③当t为何值时PA与一腰垂直?
如图所示,直线AB交x轴于点A,交y轴于点B,点C、E在直线AB上,过点C作直线AB
的垂线交y轴于点D,且OD=CD=CE.点C的坐标为(a,b),a、b(a>b)是方程x
2
-12x+32=0的解.
(1)求DC的长;
(2)求直线AB的解析式;
(3)在x轴的正半轴上是否存在点Q,使△OCB和△OCQ相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.
课题学习
●探究:
(1)在图1中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为
(1,0)
(1,0)
;
②若C(-2,2),D(-2,-1),则F点坐标为
(-2,
1
2
)
(-2,
1
2
)
;
(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的
代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y) 时,
x=
a+c
2
a+c
2
,y=
b+d
2
b+d
2
.(不必证明)
●运用:
在图2中,y=|x-1|的图象x轴交于P点.一次函数y=kx+1与y=|x-1|的图象交点为A,B.
①求出交点A,B的坐标(用k表示);
②若D为AB中点,且PD垂直于AB时,请利用上面的结论求出k的值.
已知:如图,在平面直角坐标系xoy中,一次函数
y=
3
4
x+3
的图象与x轴和y轴交于A、B两
点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)分别求出点A′、B′的坐标;
(2)若直线A′B′与直线AB相交于点C,求S
四边形OB′CB
的值.
(2012·道里区三模)如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(-4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒4
5
个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
(2012·岱岳区二模)如图,一次函数y=-
3
3
x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,
1
2
),请用含a的式子表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值.
(2012·鞍山一模)如图,点C的坐标为(0,3),点A的坐标为(
3
3
,0),点B在x轴上方且BA⊥x轴,
tanB=
3
,过点C作CD⊥AB于D,点P是线段OA上一动点,PM∥AB交BC于点M,交CD于点Q,以PM为斜边向右作直角三角形PMN,∠MPN=30°,PN、MN的延长线交直线AB于E、F,设PO的长为x,EF的长为y.
(1)求线段PM的长(用x表示);
(2)求点N落在直线AB上时x的值;
(3)求PE是线段MF的垂直平分线时直线PE的解析式;
(4)求y与x的函数关系式并写出相应的自变量x取值范围.
(2011·无锡一模)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (-15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC重合.得到△ACD.
(1)求直线AC的解析式;
(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;
(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
(2011·溧水县二模)已知:如图所示,直线l的解析式为
y=
3
4
x-3
,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)半径为0.75的⊙O
1
,以0.4个单位/秒的速度从原点向x轴正方向运动,问在什么时刻与直线l相切;
(3)在第(2)题的条件下,在⊙O
1
运动的同时,与之大小相同的⊙O
2
从点B出发,沿BA方向运动,两圆经过的区域重叠部分是什么形状的图形?并求出其面积.
(2011·道里区模拟)如图,直线l:y=
3
2
x+3交x轴、y轴于A、B点,四边形ABCD为等腰梯
形,BC∥AD,D点坐标为(6,0).
(1)求:A、B、C点坐标;
(2)若直线l沿x轴正方向平移m个(m>0)单位长度,与AD、BC分别交于N、M点,当四边形ABMN的面积为12个单位面积时,求平移后的直线的解析式;
(3)如果B点沿BC方向,从B到C运动,速度为每秒2个单位长度,A点同时沿AD方向,从A到D运动,速度为每秒3个单位长度,经过t秒的运动,A到达A′处,B到达B′处,问:是否能使得A′B′平分∠BB′D?若能,请求出t的值;若不能,请说明理由.
第一页
上一页
157
158
159
160
161
下一页
最后一页
1352096
1352098
1352102
1352104
1352107
1352109
1352112
1352115
1352117
1352122