数学
(2010·丰台区二模)已知:如图,在△ABC中,AD⊥BC于点D,E为AD上一点,BE=AC,∠ABD=∠BAD.
求证:DE=DC.
(2010·海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)若AB=AC,∠BAC=90°那么
①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是
CF=BD,CF⊥BD
CF=BD,CF⊥BD
(直接写出结论)
②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.
(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.
(2010·怀柔区二模)已知如图,AC=AE,AB=AD,∠CAE=∠BAD.求证:BC=DE.
已知:如图,点B、E、C、F共线,AC、DE相交于点O,AB∥DE,AB=DE,BE=CF.求证:
(1)△ABC≌△DEF;
(2)∠D=∠EOC.
如图所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.
(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:
AD=AB+CD
AD=AB+CD
.
(2)试证明你的猜想.
(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程.
CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α,若直线CD经过∠BCA的内部,且E、F在射线C、D上,请解答下面的三个问题:
(1)如图1,若∠BCA=90°,∠α=90°,则∠BCE
=
=
∠CAF;BE
=
=
CF(填“>”、“<”、“=”);并证明这两个结论.
(2)如图2,若∠BCA=80°,要使∠BCE与∠CAF有(1)中的结论,则∠α=
100
100
;
(3)如图2,若0°<∠BCA<180°,当∠α与∠BCA满足什么关系时,则(1)中的两个结论仍然成立.这个关系是
∠α+∠BCA=180°
∠α+∠BCA=180°
.(只填结论,不用证明)
如图,点O是等边△ABC内一点,∠AOB=120°,∠BOC=α,△OCD也是等边三角形.
(1)请说明△BOC≌△ADC;
(2)当α=120°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是直角三角形?
如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数;
(3)在(2)的结论下,过点C作CG⊥AD,CF=4,求CG.
如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.
已知,在△ABC中,作AD⊥BC于D,且AD=BD,作BE⊥AC于E,AD和BE所在的直线交于H点.
(1)如图,当∠ABC为锐角时,请找出图中与BH相等的线段,并说明理由;
(2)当∠ABC为钝角时,其它条件不变,(1)中的结论还成立吗?请画出图形并说明理由.
第一页
上一页
44
45
46
47
48
下一页
最后一页
948056
948057
948058
948059
948060
948061
948062
948063
948064
948065