数学
已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D.
(1)PC和PD有怎样的数量关系是
PC=PD
PC=PD
.
(2)请你证明(1)得出的结论.
如图,在△ABC中,∠ABC=90°,D为BC上一点,在△ADE中,∠E=∠C,∠1=90°-
1
2
∠EDC.求证:
(1)∠1=∠2;
(2)ED=BC+BD.
如图,BE⊥AC、CF⊥AB于点E、F,BE与CF交于点D,DE=DF,连接AD.
求证:(1)∠FAD=∠EAD
(2)BD=CD.
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交AB于M,DF交BC于N.证明DM=DN;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?答:
是
是
(请写出结论,不用证明.)
如图,AC=DF,AC∥DF,AE=DB.求证:BC=EF.
如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.
(1)图①中有
3
3
对全等三角形,并把它们写出来
△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD
△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD
;
(2)求证:BD与EF互相平分于G;
(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.
已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.
(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;
(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;
(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.
在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.
①判断线段MN、BM、CN之间有何数量关系,并证明;
②若AM=a,BM=b,AB=c,试利用图①验证勾股定理a
2
+b
2
=c
2
;
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC,BD的数量关系是
相等
相等
,直线AC,BD相交成
90
90
度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
已知如图,四边形ABCD中,AD=BC,AD=BC,AE⊥BD于E,CF⊥BD于F,
求证:BE=DF.
第一页
上一页
41
42
43
44
45
下一页
最后一页
948026
948027
948028
948029
948030
948031
948032
948033
948034
948035