题目:
已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.
(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;
(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;
(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.
答案
解:(1)证明:∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∴∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠EAC=90°
∴∠ABD=∠EAC,
在△ABD和△CAE中
∵
| ∠ADB=∠CEA=90° | ∠ABD=∠EAC | AB=AC |
| |
,
∴△ABD≌△CAE(AAS)
∴AD=CE,BD=AE,
∵AE=AD+DE,
∴BD=DE+CE;
(2)BD、DE、CE的关系为BD=DE-CE,理由为:
证明:在△ABD和△CAE中
∵
| ∠ADB=∠CEA=90° | ∠BAD=∠EAC | AB=AC |
| |
,
∴△ABD≌△CAE(AAS)
∴AD=CE,BD=AE,
∵AE=DE-AD,
∴BD=DE-CE;
(3)当D、E位于直线BC异侧时,BD=DE+CE;当D、E位于直线BC同侧时,BD=DE-CE.
解:(1)证明:∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∴∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠EAC=90°
∴∠ABD=∠EAC,
在△ABD和△CAE中
∵
| ∠ADB=∠CEA=90° | ∠ABD=∠EAC | AB=AC |
| |
,
∴△ABD≌△CAE(AAS)
∴AD=CE,BD=AE,
∵AE=AD+DE,
∴BD=DE+CE;
(2)BD、DE、CE的关系为BD=DE-CE,理由为:
证明:在△ABD和△CAE中
∵
| ∠ADB=∠CEA=90° | ∠BAD=∠EAC | AB=AC |
| |
,
∴△ABD≌△CAE(AAS)
∴AD=CE,BD=AE,
∵AE=DE-AD,
∴BD=DE-CE;
(3)当D、E位于直线BC异侧时,BD=DE+CE;当D、E位于直线BC同侧时,BD=DE-CE.