题目:
在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.
①判断线段MN、BM、CN之间有何数量关系,并证明;
②若AM=a,BM=b,AB=c,试利用图①验证勾股定理a
2+b
2=c
2;
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
答案
解:

(1)①MN=BM+CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AM+AN=BM+CN;
②由①知△MAB≌△NCA,
∴CN=AM=a,AN=BM=b,AC=BC=c,
∴MN=a+b,
∵S
梯形MBCN=S
△MAB+S
△ABC+S
△NCA=
ab+
c
2+
ab,
S
梯形MBCN=
(BM+CN)×MN=
(a+b)
2,
∴
ab+
c
2+
ab=
(a+b)
2,
∴a
2+b
2=c
2;
(2)MN=BM-CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AN-AM=BM-CN.
解:

(1)①MN=BM+CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AM+AN=BM+CN;
②由①知△MAB≌△NCA,
∴CN=AM=a,AN=BM=b,AC=BC=c,
∴MN=a+b,
∵S
梯形MBCN=S
△MAB+S
△ABC+S
△NCA=
ab+
c
2+
ab,
S
梯形MBCN=
(BM+CN)×MN=
(a+b)
2,
∴
ab+
c
2+
ab=
(a+b)
2,
∴a
2+b
2=c
2;
(2)MN=BM-CN;
理由:∵∠MAB+∠NAC=90°,∠ACN+∠NAC=90°,
∴∠MAB=∠ACN,
在△MAB和△NCA中
,
∴△MAB≌△NCA(AAS),
∴BM=AN,AM=CN,
∴MN=AN-AM=BM-CN.