数学
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),
N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE=
6
6
cm.
(3)BE与AD有何位置关系?请说明理由.
在△ABC中,∠ACB=90°AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当MN绕点C旋转到图1的位置时,请你探究线段DE、AD、BE之间的数量关系(直接写出结论,不要求写出证明过程);
(2)当MN绕点C旋转到图2的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明;
(3)当MN绕点C旋转到图3的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明.
如图,已知AB=AC,BD⊥DE于D,CE⊥DE于E,BD=AE=3,CE=5.
(1)求DE的长;
(2)说明∠BAC=90°的理由.
△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,且AC=BF.试说明∠ABC=45°.
如图,AE=AD,∠B=∠C,说明BD=CE的理由.
如图:△ABC和△ADE是等边三角形.证明:BD=CE.
已知点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC
(1)如图1,若点O在BC上,求证:AB=AC.
(2)如图2,若点O在△ABC内部,求证:AB=AC.
(3)猜想,若O点在△ABC的外部,AB=AC成立吗?
如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
如图所示,已知∠ACB=∠ADB=90°,AC=AD,点E在AB上.
(1)判断点A是否在∠CBD的平分线上,并说明理由;
(2)当CE=8时,求DE的长度.
第一页
上一页
21
22
23
24
25
下一页
最后一页
947788
947790
947792
947794
947796
947800
947801
947803
947805
947807