数学
已知:如图,B、C、D在一直线上,△ABC、△ADE是等边三角形,若CE=15cm,CD=6cm,求BC的长度及∠ECD的度数.
等边三角形ABC的边AB在直线l上,动点D也在直线l上(不与A,B点重合),△ADE为等边三角形.
(1)如图①,当点D在线段BA的延长线上且△ADE与△ABC在直线l的同侧时,试猜想线段BE与CD的大小关系为
BE=CD
BE=CD
(2)如图②,当点D在线段BA上且ADE与ABC在直线l异测时,(1)中的结论是否仍然成立?若不成立,请说明结论发生了怎样的变化;若成立,说明理由,并求出此时线段BE与CD所在直线的夹角α(0°<α<90°)
(3)当点D在线段AB的延长线上且△ADE与△ABC仍然在直线l的异测时,试在图中画③出相应的图形,并直接判断此时BE与CD的关系(不必说明理由).
如图,△ABC和△ECD都是等边三角形,求证:AD=BE.
在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM
=CN,AM、BN交于点Q,求证:∠BQM=60°.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,譬如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?请你选择其中一个问题并画出图形,给出证明.
如图,在△ABC中,BD=DC,∠ADB=∠ADC,求证:AD⊥BC.
如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
求证:∠B=∠C.
如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?
如图,AB=AC,BD=CD,若∠B=28°,求∠C的度数.
如图,在直角三角形ABC和直角三角形ADE中,AB=AC,AD=AE,CE与BD交于点M,BD交AC于N.
①求证:BD=CE;
②求证:BD⊥CE;
③当三角形ABC绕点A顺时针方向旋转到如图②的位置时,上述结论是否成立?请选择一个结论给予证明.
第一页
上一页
11
12
13
14
15
下一页
最后一页
947674
947675
947676
947677
947678
947679
947680
947681
947682
947683