答案
解:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=∠ACB=60°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△BAD和△CAE中
∵
,
∴△BAD≌△CAE,
∴BD=CE=15cm,∠ACE=∠B=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°,
BC=BD-CD=15cm-6cm=9cm.
解:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=∠ACB=60°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△BAD和△CAE中
∵
,
∴△BAD≌△CAE,
∴BD=CE=15cm,∠ACE=∠B=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°,
BC=BD-CD=15cm-6cm=9cm.