数学
如图,已知正方形ABCD,设AB、BC的延长线分别为射线BK,CN,点F从A点沿射线AB以一定的速度运动,同时点E从B点沿射线BC以相同的速度运动,FD交AE于点M.
(1)求证:△AFD≌△BEA.
(2)在射线EN的上方以EN为边作∠GEN=∠BAE,且使EG=AE.
①求证:EGDF为平行四边形;
②当E,F两点运动到某时刻时,使得M为AE中点,求此时∠G的度数.
(2012·北碚区模拟)已知:如图,点C是线段AB的中点,CD∥BE,∠D=∠E,求证:CD=BE.
(2012·斗门区一模)(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(2012·河源二模)已知:如图,在·ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:
(1)△ABE≌△CDF;
(2)BE∥DF.
(2012·黄冈模拟)等腰梯形一底的中点到另一底的两个端点的距离会相等吗?若相等,请给出证明.若不相等,请说明理由.
(2012·宁波模拟)已知:如图,点E,C在线段BF上,AB=DE,AB∥DE,BE=CF.求证:AC=DF.
如图,在等腰梯形ABCD中,∠DCB=60°,AD∥BC,且AD=DC. E,F分别在AD,DC的延长线上,且DE=CF、A
F,BE交于点P,且分别交DC,BC于点H,G.
(1)求证:AF=BE;
(2)请你猜测∠BPF的度数,并证明你的结论;
(3)延长BA,CD相交于M,若AD=24,BP=27,试求三角形MBP和三角形MBH的面积比.
如图,△ACD和△ABE都是等腰直角三角形,∠DAC和∠EAB是直角,连接CE.
(1)在图上画出△ACE以点A为旋转中心,顺时针旋转90°后得到的△AC'E'(只需作出图形;不写画法);
(2)猜想EC与C'E'的位置有什么关系,并证明你的结论.
如图,四边形ABCD是矩形,点O在矩形上方,点B绕着点O逆时针旋转60°后的对应点为点C.
(1)画出点A绕着点O逆时针旋转60°后的对应点E;
(2)连接CE,证明:CO平分∠ECD
(3)在(1)(2)的条件下,连接ED,猜想ED与CO的位置关系,并证明你的结论.
如图①,已知△ABC和△ACD是两个全等的等边三角形,用它们拼成四边形ABCD.
(1)四边形ABCD是什么特殊的四边形,说明理由;
(2)分别延长△ABC的边AB,AC到M,N,使AM=AN,连接MN得到△AMN,再将△AMN绕点A按逆时针方向旋转40°,其边与四边形ABCD的两边BC,CD分别相交于点E,F,请你探索线段BE与CF之间的数量关系,并说明理由;
(3)按(2)的操作,若将△AMN绕点A按逆时针方向旋转α角(60°<α<80°),其边与四边形ABCD的两边BC,CD的延长线分别相交于点E,F,在图②中画出图形,判断此时(2)中的结论是否成立,并说明理由.
第一页
上一页
5
6
7
8
9
下一页
最后一页
968439
968440
968441
968442
968443
968444
968445
968446
968447
968448