试题
题目:
(2012·河源二模)已知:如图,在·ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:
(1)△ABE≌△CDF;
(2)BE∥DF.
答案
解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵∠BAC+∠BAE=∠DCA+∠DCF=180°,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴∠E=∠F,
∴BE∥DF.
解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∵∠BAC+∠BAE=∠DCA+∠DCF=180°,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴∠E=∠F,
∴BE∥DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
(1)根据平行四边形的性质可得出AB=CD,∠BAE=∠DCF,结合AE=CF即可证明三角形全等.
(2)根据全等三角形的性质可得出∠E=∠F,继而可判断平行.
此题考查了平行四边形的性质、全等三角形的判定与性质,属于基础题,解答本题需要我们熟练掌握平行四边形的对边相等且互补,难度一般.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?