数学
如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论;
(3)试探究,若∠B=60°时,当AB与BC满足什么数量关系时,四边形AECG是正方形(直接写出结果).
在△ABC中,∠C=90°,∠ABC的平分线与∠ACB的平分线相交于点O,OD⊥BC与点D,当BC=AC时,如图①易证:AC+BC-AB=2DO.
(1)当BC≠AC时,如图②,线段AC、BC、AB、OD之间有怎样的等量关系,写出你的猜想并给与证明;
(2)当BC≠AC时,∠ABC的外角平分线与∠ACB的平分线相交于点O,OD⊥BC与点D,如图③线段AC、BC、AB、OD之间有怎样的等量关系写出你的猜想,不需证明.
如图所示,在正方形ABCD的边CB的延长线上取点F,连接AF,在AF上取点G,使得AG=AD,连接DG,过点A作AE⊥AF,交DG于点E.
(1)若正方形ABCD的边长为4,且tan∠FAB=
1
2
,求FG的长;
(2)求证:AE+BF=AF.
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)当BC=6,∠BED=120°时,求BE的长.
如图正方形AOBC,等腰Rt△EOF中,∠EOF=90°,EF与OB交于G,连接AE、AB、BF.
(1)求证:AE=BF;
(2)若∠AEO=90°,AB=
5
2
,OE=3,求OG的长.
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.
(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;
(2)如图②,若∠MAN=45°,求△MCN的周长.
探究:如图①,在正方形ABCD中,E、F、G分别是边AD、BC、CD上的点,BG⊥EF,垂足为H.求证:EF=BG.
应用:如图②,将正方形ABCD翻折,使点B落在边CD上的点B′处,折痕为EF.若AE=2,BF=6,则B′C=
4
4
.
在正方形ABCD中,点E在线段BC上(点E不与点B、C重合),连接AE,过点E作AE的垂直交直线DC于F,交直线AB于G.如图①,当点E为BC边中点时,易证;CF+BG=EB.当点E不为BC边中点时,如图②,图③两种情况下,上述结论是否成立,若成立,请给予证明;若不成立,线段CF、BG、EB之间有怎样的数量关系,写出你的猜想,不需证明.
如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于点F,若∠DEB=150°,正方形的边长为a,求:①∠AFE的度数;
②sin∠BEC的值.
第一页
上一页
22
23
24
25
26
下一页
最后一页
968649
968650
968651
968652
968653
968654
968655
968656
968657
968658