数学
如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表法加以分析说明.
有四张形状、大小和质地相同的卡片A、B、
C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)请你用画树形图或列表的方法列举出可能出现的所有结果;
(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率.
依据闯关游戏规则,请你探究“闯关游戏”的奥秘.闯关游戏规则:如图所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置.同时按下两组中各一个按钮,当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.
(1)用列表或画树状图的方法表示所有可能的闯关情况;
(2)求出闯关成功的概率.
如图所示,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:转盘被划分成三个相同的扇形,并分别标上数字1,2,3,分别转动两次转盘,转盘停止后,指针所指的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指在界线上,则重新转动转盘.
(1)请你用树状图或列表的方法,求M点落在正方形ABCD面上(含内部与边界)的概率.
(2)将正方形ABCD向右至少平移多少个整数单位,使M点落在正方形ABCD面上(含内部与边界)的概率为
2
3
?
2010年上海世博会某展览馆展厅东面有两个入口A,B,南面及西面、北面各有一个出口C,D,E,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开.
(1)她从进入到离开共有多少种可能的结果?(要求画出树状图)
(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?
如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的
数字分别记作把a、b作为点A的横、纵坐标.
(1)请你通过列表法求点A(a,b)的个数;
(2)求点A(a,b)在函数y=x的图象上的概率.
不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为
1
4
.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
如图,两个转盘中指针落在每一个数字上的机会均等,转动甲、乙两个转盘
,转盘停止后指针将各指向一个数字.
(1)用转盘上所指的两个数字作和,列举(用列表或画树状图)所有可能得到的数字之和;
(2)求出(1)中数字之和为奇数的概率.
一个黑布袋中有五个完全相同的小球,分别标有数字1、2、-1、-2、和-3.小明二次从黑布袋中随机个摸出一个小球,第一次摸出的球其标有的数字作为点Q(x,y)的横坐标,第二次摸出的球其标有的数字作为点Q(x,y)的纵坐标,且第一次摸出的球不在放回黑布袋中.
(1)试用列表或画树形图的方法列举出点Q(x,y)的所有情形;
(2)求点Q(x,y)落在直线y=x-3上的概率.
我们知道,利用两个转盘,做配紫色游戏.如图,红、蓝色区域各占一半,(1)求一个指针指向红,一个指针指向蓝配成紫色获胜的概率;(2)改变图2的红、蓝色区域比例使其扇形面积比为3﹕1,获胜的概率又是多少由此,请进行猜想,写出你猜想的结果.
第一页
上一页
14
15
16
17
18
下一页
最后一页
1212408
1212414
1212416
1212418
1212425
1212427
1212429
1212434
1212436
1212438