数学
把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5cm和3cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为( )
如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则下列结论:(1)AB=DE;(2)∠ABC+∠DFE=90°;(3)∠ABC=∠DEF中正确的有( )
(2009·阳泉二模)如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为
50°
50°
.
如图,有两个长度相等的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面的夹角∠ABC与∠DFE的度数和是
90
90
度.
如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第
③
③
块去配,其依据是根据定理
ASA
ASA
(可以用字母简写)
如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使A、C、E三点在一条直线上,这时测得
DE
DE
的长就等于AB的长.
用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是
SSS
SSS
(用字母写出).
如图所示,A、B在一水池的两侧,若BE=DE,∠B=∠D=90°,CD=8m,则水池宽AB=
8
8
m.
测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是
ASA
ASA
.
如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=
∠2
∠2
,△ABC≌
△EDC
△EDC
,若测得DE的长为25米,则河宽AB长为
25米
25米
.
第一页
上一页
79
80
81
82
83
下一页
最后一页
1204146
1204149
1204150
1204152
1204156
1204158
1204160
1204163
1204165
1204168