数学
(2011·绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( )
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.
(2011·东城区二模)如图,点D在AB上,DF交AC于点E,CF∥AB,AE=EC.
求证:AD=CF.
(2010·莆田质检)如图,线段AC与BD相交于点O,E、F分别为OB、OC的中点,连接AB、DC、EF分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,要求同学从这三个等式中选出两个作为条件,一个作为结论.(在横线上填上序号)
(1)写出一个真命题:如果
①
①
、
②
②
,那么
③
③
.并证明这个真命题;
(2)写出一个假命题:如果
②
②
、
③
③
,那么
①
①
.
(2010·海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)若AB=AC,∠BAC=90°那么
①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是
CF=BD,CF⊥BD
CF=BD,CF⊥BD
(直接写出结论)
②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.
(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.
(2010·丰台区二模)已知:如图,在△ABC中,AD⊥BC于点D,E为AD上一点,BE=AC,∠ABD=∠BAD.
求证:DE=DC.
1
2
3
4
5
下一页
最后一页
650333
1041934
1041936
1041938
1041941
1041944
1041946
1041950
1041952
1041954