数学
(2013·汕头一模)某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清
洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:
根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?
(2)已知洗衣机的排水速度为每分钟19升,
①求排水时y与x之间的关系式.
②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.
(2013·蕲春县模拟)有甲,乙两个形状完全相同容器都装有大小相同一个进水管和一个出水管,两容器单位时间进、出的水量都是一定的.已知甲容器单开进水管第10分钟把空容器注满;然后同时打开进、出水管,第30分钟可把甲容器的水放完,甲容器中的水量Q(升)随时间t(分)变化的图象如图1所示.而乙容器内原有一部分水,先打开进水管5分钟,再打开出水管,进、出水管同时开放,第20分钟把容器中的水放完,乙容器中的水量Q(升)随时间t(分)变化的图象如图2所示.求乙容器内原有水多少升?
已知函数y=(2m+1)x+m-3
(1)若这个函数的图象经过原点,求m的值
(2)若这个函数的图象不经过第二象限,求m的取值范围.
函数y=3x+1的图象一定过点( )
下列各点中,在函数y=x-2的图象上的点是( )
(2013·静海县一模)某采摘农场计划种植A、B两种草莓共6亩,根据表格信息,解答下列问题:
项目 品种
A
B
年亩产(单位:千克)
1200
2000
采摘价格
(单位:元/千克)
60
40
(1)若该农场每年草莓全部被采摘的总收入为460000元,那么A、B两种草莓各种多少亩?
(2)若要求种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?
已知点A(2,3)在函数的图象y=2x+a上,则a等于( )
直线y=2x-1与y轴的交点坐标是( )
(2013·金山区二模)某工厂计划生产甲、乙两种型号的机器200台,生产机器一定要有A、B两种材料,现厂里有A种材料10000吨,B种材料6000吨,已知生产一台甲机器和一台乙机器所需A、B两种材料的数量和售后利润如下表所示:
机器型号
A种材料
B种材料
售后利润
甲
55吨
20吨
5万元
乙
40吨
36吨
6万元
设生产甲种型号的机器x台,售后的总利润为y万元.
(1)写出y与x的函数关系式;
(2)若你是厂长,要使工厂所获利润最大,那么如何安排生产?(请结合所学函数知识说明理由).
函数y=4x的图象一定过( )
第一页
上一页
223
224
225
226
227
下一页
最后一页
1045400
1045402
1045405
1045407
1045410
1045412
1045414
1045417
1045419
1045424