数学
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)说明线段AB、AD、BC之间的数量关系,并说明理由;
(3)DE与CE有怎样的关系?并说明理由.
如图(1),直角梯形OABC中,∠A=90°,AB∥CO,且AB=2,OA=2
3
,∠BCO=60°.
(1)求证:△OBC为等边三角形;
(2)如图(2),OH⊥BC于点H,动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为1/秒.设点P运动的时间为t秒,△OPQ的面积为S,求S与t之间的函数关系式,并求出t的取值范围;
(3)设PQ与OB交于点M,当OM=PM时,求t的值.
四边形ABCD为直角梯形,AD∥BC,AD=36cm,BC=39cm,点P、Q分别在AD、BC上,且CQ=3AP.当AP为何值时
(1)四边形PQCD为平行四边形;
(2)四边形ABQP的面积等于四边形PQCD的面积.
如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动.当其中一个动点到达端点时,另一个动点也随之
停止运动,两动点运动的时间t(s).
(1)当t为何值时,四边形MNBC是平行四边形;
(2)写出四边形ANMD的面积y(cm
2
)与t(s)的函数关系式,并画出函数的图象.
如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A
(10,0)、C(0,8),CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.
(1)求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;
(2)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;
(3)几秒后线段PD将梯形COAB的面积分成1:3的两部分?求出此时点P的坐标?
四边形ABCD是直角梯形,AB∥DC,AD⊥DC,AB=AD=5,∠BCD=45°,求梯形的周长.
已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=6,BC=8,AD=14.E为AB上一点,BE=2,点F在BC边上运动,以FE为一边作菱形FEHG,使点H落在AD边上,点G落在梯
形ABCD内或其边上.若BF=x,△FCG的面积为y.
(1)当x=
4
4
时,四边形FEHG为正方形;
(2)求y与x的函数关系式;(不要求写出自变量的取值范围)
(3)在备用图中分别画出△FCG的面积取得最大值和最小值时相应的图形(不要求尺规作图,不要求写画法),并求△FCG面积的最大值和最小值;(计算过程可简要书写)
(4)△FOG的面积由最大值变到最小值时,点G运动的路线长为
12-2
3
12-2
3
.
如图,在直角梯形ABCD中,AB∥DC,∠B=90°.E是BC上的一点,连接AE、DE,△AED是等腰直角
三角形.
(1)若△AED的面积是
25
2
,△ABE的面积是6,求△ABE的周长.
(2)若△AED的面积是a,直角梯形ABCD的面积是b,且AB=EC,BE=DC.试判断b与2a的大小,并说明理由.
(2013·兰州)下列命题中是假命题的是( )
(2012·庆阳)已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为( )
第一页
上一页
44
45
46
47
48
下一页
最后一页
1016487
1016488
1016489
1016490
1016491
1016492
1016493
1016494
1017439
1017440