数学
(2010·房山区一模)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=AB=2,点E是AB边上一动点(点E不与点A、B重合),连接ED,过ED的中点F作ED的垂线,交AD于点G,交BC于点K,过点K作KM⊥AD于M.
(1)当E为AB中点时,求
DM
DG
的值;
(3)若
AE
AB
=
1
3
,则
DM
DG
的值等于
2
5
2
5
;
(6)若
AE
AB
=
1
n
(n为正整数),
则
DM
DG
的值等于
(n-1)
2
n
2
+1
(n-1)
2
n
2
+1
(用含n的式子表示).
(2010·昌平区二模)如图,在梯形ABCD中,AB∥DC,∠A=90°,且AB=4,CD=3,BC=7.O为AD边的中点,OH⊥BC于H,求OH的长.
(2010·宝安区一模)阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S
△ABC
=S
△PAB
+S
△PAC
,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
(2009·海淀区二模)如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2
2
,求BC的长.
(2007·郑州模拟)如图,在梯形ABCD中,CD∥AB,E是BC的中点,AE与DC的延长线交于点F连接AC、BF.
(1)在不添加辅助线的条件下,试找出一组全等三角形,并说明全等的理由;
(2)试判定四边形ABFC是一个什么四边形?并说明你的理由.
(2004·郫县)已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)四边形ABFC是什么四边形,并说明你的理由.
(2004·昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.
求证:AE=DE.
(2003·随州)已知:如图,梯形ABCD中,AD∥BC,DC⊥BC.沿对角线BD折叠,点A恰好落在DC上,记为A′.若AD=4,BC=6,求A′B的长.
(2000·海淀区)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:PB=PC.
(2013·闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.
第一页
上一页
30
31
32
33
34
下一页
最后一页
1015896
1015897
1015898
1015899
1015900
1015901
1015902
1015903
1015904
1015905