数学
如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.
(1)若AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;
②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并说明理由;
(2)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°点D在线段BC上运动,试探究CF与BC位置关系.
把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.
(1)图1是一种放置位置及由它抽象出的几何图形,B、C、D在同一条直线上,连接EC.请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;
(2)图2也是一种放置位置及由它抽象出的几何图形,A、C、D在同一条直线上,连接BD、连接EC并延长与BD交于点F.请找出线段BD和EC的位置关系,并说明理由;
(3)请你:
①画出一个符合放置规则且不同于图1和图2所放位置的几何图形;
②写出你所画几何图形中线段BD和EC的位置和数量关系;
③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?
如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)
2
的值为( )
如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.
(2008·湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名
的定理,这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
如图是用硬纸板做成的四个全等的直角三角形(两
直角边长分别是a、b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.
如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
第一页
上一页
136
137
138
139
140
下一页
最后一页
1064093
1064094
1064098
1064099
1064101
1064103
1064105
1064107
1064108
1064110