试题
题目:
如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
答案
a
2
+b
2
=c
2
解:此图可以这样理解,有三个Rt△其面积分别为
1
2
ab,
1
2
ab和
1
2
c
2
.
还有一个直角梯形,其面积为
1
2
(a+b)(a+b).
由图形可知:
1
2
(a+b)(a+b)=
1
2
ab+
1
2
ab+
1
2
c
2
,
整理得(a+b)
2
=2ab+c
2
,a
2
+b
2
+2ab=2ab+c
2
,
∴a
2
+b
2
=c
2
.
故答案为:a
2
+b
2
=c
2
.
考点梳理
考点
分析
点评
专题
勾股定理的证明.
用三角形的面积和、梯形的面积来表示这个图形的面积,从而列出等式,发现边与边之间的关系.
此题考查的知识点是勾股定理的证明,主要利用了三角形的面积公式:底×高÷2,和梯形的面积公式:(上底+下底)×高÷2.
证明题.
找相似题
如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)
2
的值为( )
如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.