数学
如图,△ABC是等边三角形,线段AD为BC边上的中线,动点P在直线AD上运动时以PC为一边且在PC的下方做等边△PCE,连接BE.
(1)求∠CAD的值;
(2)当点P在线段AD上(点P不与点A重合)时,求证:AP=BE;
(3)当点P运动的过程中(点P不与点A重合),若点C关于直线BE的对称点是Q点,求证:CQ=AC.
已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.
(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
如图所示,已知:AB=BC=AC,CD=DE=EC,
(1)求证:∠ACD=∠BCE;
(2)求证:△ADC≌BEC;
(3)求证:AD=BE.
如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,P为BC边上任意一点,点Q为AC边动点,分别以CP、PQ为边做等边△PCF和等边△PQE,连接EF.
(1)试探索EF与AB位置关系,并证明;
(2)如图2,当点P为BC延长线上任意一点时,(1)结论是否成立?请说明理由.
(3)如图3,在Rt△ABC中,∠ACB=90°,∠A=m°,P为BC延长线上一点,点Q为AC边动点,分别以CP、PQ为腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,连接EF.要使(1)的结论依然成立,则需要添加怎样的条件?为什么?
(1)填空:把下面的推理过程补充完整,并在括号内注明理由.
已知:如图1,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.
解:∵BC∥EF(已知)
∴∠ABC=
∠E
∠E
(
两直线平行,同位角相等
两直线平行,同位角相等
)
在△ABC与△DEF中
∴△ABC≌△DEF(
SAS
SAS
)
∴∠C=∠F(
全等三角形的对应角相等
全等三角形的对应角相等
)
(2)如图2,A、B、E三点在同一条直线上,△ABC和△BDE都是等边三角形,AD交BC于F,CE分别交BD、AD于G、H,请在图中找出三对全等三角形.
(1)如图①,△OAB和△OCD都是等边三角形,A、O、D三点不在同一直线上,AC和BD相交于点E,连接BC,求∠AEB的大小;
(2)如图②,如果A、O、D三点在同一直线上,其余条件不变,试求∠AEB的大小.
如图是某城市的部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“中巴”停靠点,“中巴”甲从站A出发,按照A→H→G→D→E→C→F的顺序到达F站,“中巴”乙从站B出发,按照B→F→H→E→D→C→G的顺序到达G站,若甲、乙两车同时分别从A、B站出发,在各站停靠的时间、车速均一样,
(1)请分别用图中线段的和表示“中巴”甲、“中巴”乙所走的路程;
(2)试问哪一辆先到指定站,并说明理由?
第一页
上一页
129
130
131
132
133
1175465
1175471
1175482
1175486
1175493
1175499
1175506