试题
题目:
如图,△ABC是等边三角形,线段AD为BC边上的中线,动点P在直线AD上运动时以PC为一边且在PC的下方做等边△PCE,连接BE.
(1)求∠CAD的值;
(2)当点P在线段AD上(点P不与点A重合)时,求证:AP=BE;
(3)当点P运动的过程中(点P不与点A重合),若点C关于直线BE的对称点是Q点,求证:CQ=AC.
答案
(1)解:∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵线段AD为BC边上的中线,
∴∠CAD=
1
2
∠CAB=
1
2
×60°=30°.
(2)证明:∵△ABC和△PCE是等边三角形,
∴AC=BC,CP=CE,∠ACB=∠PCE=60°,
∴∠ACB-∠PCB=∠PCE-∠PCB,
∴∠ACP=∠ECB,
在△ACP和△BCE中
AC=BC
∠ACP=∠BCE
CP=CE
∴△ACP≌△BCE(SAS),
∴AP=BE.
(3)证明:∵△ABC是等边三角形,
∴AC=BC,
∵△ACP≌△BCE,
∴∠CBE=∠CAD=30°,
连接BQ,延长BE交CQ于M,
∵C、Q关于直线BE对称,
∴BM⊥CQ,CM=QM,
∴BC=BQ,
∴∠CBE=∠QBE=30°,
即∠CBQ=60°,
∵BC=BQ,
∴△CBQ是等边三角形,
∴CQ=BC,
∴CQ=AC.
(1)解:∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵线段AD为BC边上的中线,
∴∠CAD=
1
2
∠CAB=
1
2
×60°=30°.
(2)证明:∵△ABC和△PCE是等边三角形,
∴AC=BC,CP=CE,∠ACB=∠PCE=60°,
∴∠ACB-∠PCB=∠PCE-∠PCB,
∴∠ACP=∠ECB,
在△ACP和△BCE中
AC=BC
∠ACP=∠BCE
CP=CE
∴△ACP≌△BCE(SAS),
∴AP=BE.
(3)证明:∵△ABC是等边三角形,
∴AC=BC,
∵△ACP≌△BCE,
∴∠CBE=∠CAD=30°,
连接BQ,延长BE交CQ于M,
∵C、Q关于直线BE对称,
∴BM⊥CQ,CM=QM,
∴BC=BQ,
∴∠CBE=∠QBE=30°,
即∠CBQ=60°,
∵BC=BQ,
∴△CBQ是等边三角形,
∴CQ=BC,
∴CQ=AC.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等边三角形的性质.
(1)根据代表性三角形得出AC=AB,根据等腰三角形性质求出即可.
(2)根据等边三角形性质求出AC=BC,CP=CE,∠ACB=∠PCE=60°,求出∠ACP=∠ECB,证出△ACP≌△BCE即可.
(3)连接BQ,根据轴对称求出BC=BQ,根据全等三角形性质和等腰三角形性质求出∠CBQ=60°,得出等边三角形CBQ,推出BC=CQ即可.
本题考查了全等三角形的性质和判定,线段垂直平分线性质,等腰三角形性质,轴对称,等边三角形性质的应用,注意:全等三角形的对应边相等,对应角相等.
找相似题
(2013·自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
(2011·台湾)如图1,有两全等的正三角形ABC,DEF,且D,A分别为△ABC,△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在
DE
上,如图2所示.求图1与图2中,两个三角形重迭区域的面积比为何( )
(2010·大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S
1
与△ABC的面积S
2
之间的关系是( )
(2008·绵阳)如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180°,得△A
1
B
1
C
1
,则△A
1
B
1
C
1
与△ABC重叠部分(图中阴影部分)的面积为( )
(2007·陕西)如图,在等边△ABC中,点O在AC上,且AO=3,CO=6,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )