数学
在等边△ABC中,D在BC边上,E在△ABC外,∠BAD=20°,∠DAE=70°,AD=AE,DE、AC相交于点F,求∠CAE和∠EDC的度数.
如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.
如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,
(1)求证:DP=DQ;
(2)过P作PE⊥AC于E,若BC=4,求DE的长.
如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.
(1)△DBC和△EAC会全等吗?请说说你的理由;
(2)试说明AE∥BC的理由;
(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.
如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.
如图,在等边△ABC中,BD是高,延长BC到点E,使CE=CD,AB=6cm
(1)小刚同学说:BD=DE,他说得对吗?请你说明道理.
(2)小红同学说:把“BD是高”改为其它条件,也能得到同样的结论,并能求出BE长.你认为应该如何改呢?然后求出BE长.
(1)如图①,A,B,C三点在一直线上,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,AE交BD于点F,DC交BE于点G.则AE=DC吗?BF=BG吗?请说明理由;
(2)如图②,若A,B,C不在同一直线上,那么这时上述结论成立吗?若成立请证明;
(3)在图①中,若连接F,G,你还能得到什么结论?(写出结论,不需证明)
如图,△ABC和△ACD是两个边长为2的等边三角形,另一个足够大的等边△AEF绕点A旋转,AE与BC相交于点M,AF与CD相交于点N.
(1)证明:∠DAN=∠CAM;
(2)求四边形AMCN的面积;
(3)在△AEF转动中,∠BAM=
30°
30°
时,MN的值最小?(直接填写结果,不要求写推理过程)
已知:等边三角形ABC中,BD平分∠ABC,点E在BC的延长线上,CE=CD,求证:DB=DE.
如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABC和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN,试判断△BMN的形状,并说明理由.
第一页
上一页
120
121
122
123
124
下一页
最后一页
1174634
1174640
1174649
1174663
1174667
1174671
1174676
1174680
1174687
1174691