试题

题目:
青果学院如图,△ADC是等边三角形,B是DC边中点,E在AC延长线上,且CE=BC,请判断△ABE的形状并证明你的结论.
答案
解:∵B是DC边中点,
∴AB是等边三角形ADC的顶角平分线,
∴∠BAC=30°.
∵CB=CE,
∴∠CBE=∠CEB,
∵∠ACD=60°,
∴∠E=30°,
∴∠E=∠BAE,
∴△ABE为等腰三角形.
解:∵B是DC边中点,
∴AB是等边三角形ADC的顶角平分线,
∴∠BAC=30°.
∵CB=CE,
∴∠CBE=∠CEB,
∵∠ACD=60°,
∴∠E=30°,
∴∠E=∠BAE,
∴△ABE为等腰三角形.
考点梳理
等边三角形的性质;等腰三角形的判定.
根据等边三角形的每个内角为60°及三线合一求出∠BAC的度数,再根据三角形的内角与外角的关系求出∠E=30°,从而得出△ABE是等腰三角形.
本题考查了等边三角形的性质和等腰三角形的判定,利用等边三角形的每个内角是60°及三角形内角和外角的关系是解题的关键.
探究型.
找相似题