数学
(2010·梧州)把4个完全相同的乒乓球标上数字2,3,4,5,然后放到一个不透明的口袋中,第一次任意摸出一个球(不放回),第二次再任意摸出一个球.
(1)请补充完整下面的树形图:
(2)根据树形图可知,两次摸出的球所标数字之和是7的概率的多少?
(2010·通化)小王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1,2,3,4)掷得点数和之为5时才“可以起飞”,请你根据规则计算“可以起飞”的概率.(要求用树状图或列表法求解)
(2010·铁岭)如图所示,甲乙两人准备了可以自由转动的转盘A、B,每个转盘被分成几个面积
相等的扇形,并在每个扇形内标上数字.
(1)只转动A转盘,指针所指的数字是2的概率是多少?
(2)如果同时转动A、B两个转盘,将指针所指的数字相加,则和是非负数的概率是多少?并用树状图或表格说明理由.(如果指针指在分割线上,那么重转一次,直到指针指向某一区域为止).
(2010·十堰)暑假快到了,老家在十堰的大学生张明与王艳打算留在上海,为世博会做义工.虚心争取到6个义工名额,分别安排在中国馆园区3个名额,世博轴园区园区2个名额,演艺中心园区1个名额,学校把分别标号为1,2,3,4,5,6的六个质地大小均相同的小球,放在不透明的袋子里,并规定标号1,2,3的到中国馆,标号4,5的到世博轴,标号6的到演艺中心,让张明,王艳各摸1个.
(1)求张明到中国馆做义工的概率;
(2)求张明,王艳各自在世博轴,演艺中心做义工的概率(两人不同在一个园区内).
(2010·南昌)如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置﹙指针指向两个扇形的交线时,重新转动转盘﹚,相应地得到一个数.
﹙1﹚求事件“转动一次,得到的数恰好是0”发生的概率;
﹙2﹚用树状图或表格,求事件“转动两次,第一次得到的数与第二次得到的数,它们的绝对值相等”发生的概率.
(2010·连云港)从甲地到乙地有A
1
、A
2
两条路线,从乙地到丙地有B
1
、B
2
、B
3
三条路线,从丙地到丁地有C
1
、C
2
两条路线.一个人任意选了一条从甲地到丁地的路线,求他恰好选到B
2
路线的概率是多少?
(2010·丽江)四张质地相同并标有数学0、1、2、3的卡片(如图所示),将卡片洗匀后,背面朝上放在桌面上,第一次任意抽取一张(不放回),第二次再抽一张.用列表法或树状图求两次所抽卡片上的数字恰到好处好是方程x
2
-5x+6=0两根的概率.
(2010·河源)某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩(得分为整数,满分为100分)分成五组:第一组49.5~59.5;第二组59.5~69.5;第三组69.5~79.5;第四组79.5~89.5;第五组89.5~100.5.统计后得到图所示的频数分布直方图(部分).
观察图形的信息,回答下列问题:
(1)第四组的频数为
2
2
;(直接填写答案)
(2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有
64
64
个.(直接填写答案)
(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛.用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.
(2010·广元)有三张背面完全相同的纸牌,其正面分别为正三角形、圆和平行四边形,将这三张纸牌背面朝上洗匀后摸出一张,放回洗匀后,再摸出一张.
(1)用列表法或画树状图写出两次摸出纸牌的正面出现的所有可能的结果;
(2)求两次摸出的纸牌正面都是中心对称图形的概率.
(2010·鄂尔多斯)如图,A信封中装有两张卡片,卡片上分别写着7cm,3cm;B信封中装有三张卡片,卡片上分别写着2cm,4cm,6cm;信封外有一张写着5cm的卡片,所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上表面的数量分别作三条线段的长度.
(1)求这三条线段能组成三角形的概率(画出树状图);
(2)求这三条线段能组成直角三角形的概率.
第一页
上一页
177
178
179
180
181
下一页
最后一页
922488
922489
922490
922491
922492
922493
922494
922495
922496
922497