数学
(2011·漳州质检)如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=CD=4,BC=3.点M从点D出发以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)填空:AM=
4-2t
4-2t
,AP=
1+t
1+t
.(用含t的代数式表示)
(2)t取何值时,梯形ABNM面积等于梯形ABCD面积的一半;
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,使四边形AQMK为正方形?并说明理由
(2011·濉溪县二模)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,点P从点A出发沿折线段AD-DC-CB以每秒3个单位长的速度向点B匀速运动,同时,点Q从点A出发沿射线AB方向以每秒2个单位长的速度匀速运动,当点P与点B重合时停止
运动,点Q也随之停止,设点P,Q的运动时间是t秒(t>0).
(1)当点P到达终点B时,求t的值;
(2)设△APQ的面积为S,分别求出点P运动到AD、CD上时,S与t的函数关系式;
(3)当t为何值时,能使PQ∥DB;
(4)是否存在t值,使PQ⊥AC?若存在,直接写出t的值;若不存在,请简要说明理由.
(2010·海淀区一模)已知:如图,在直角梯形ABCD中,AD∥BC,∠DCB=90°,AC⊥BD于点O,DC=2,BC=4,求AD的长.
(2008·萧山区模拟)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm;点P从点A开始沿AD边向点D以1厘米/秒的速度移动;与此同时,点Q从点C开始
沿CB边向点B以3厘米/秒的速度移动;当其中一点到达终点时,另一点也随之停止移动,设移动的时间为t秒.
(1)当t为何值时,四边形PQCD为平行四边形?
(2)设四边形PQCD的面积为y,求y与t的函数关系式.探索四边形PQCD的面积是否存在最大值?若存在,最大值是多少?若不存在,请说明理由?
如图,平行四边形OABC的顶点O为坐标原点,A点在X轴正半轴上,∠COA=60°,OA=10cm,OC=4cm,点P从C点出发沿CB方向,以1cm/s的速度向点B运动;点Q从A点同时出发沿AO方向,以3cm/s的速度向原点运动,其中一个动点达到终
点时,另一个动点也随之停止运动.
(1)求点C,B的坐标(结果用根号表示)
(2)从运动开始,经过多少时间,四边形OCPQ是平行四边形;
(3)在点P,Q运动的过程中,四边形OCPQ有可能成为直角梯形吗?若能,求出运动时间;若不能,请说明理由;
(4)在点P、Q运动过程中,四边形OCPQ有可能成为菱形吗?若能,求出运动时间;若不能,请说明理由.
如图①,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,由B→C→D→A沿边运动,设点P运动的路程为x,△ABP的面积为y,若关于y与x的函数图象如图②,求梯形ABCD的面积.
如图,在六边形ABCDEF中,AB=BC=CD=DE=EF=FA,∠FAB=∠ABC=∠BCD=∠CDE=∠DEF=∠EFA,对角线AE与BF相交于点M,BD与CE相交于点N.
(1)观察图形,写出图中两个不同形状的特殊四边形;
(2)请选择(1)中的一个结论说明你的理由.
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,DE⊥AC于F,交BC于点G,交AB的延长线于点E,且AE=AC.
(1)求证:AB=AF;
(2)若∠BAF=60°,且FG=1,求BC的长.
如图所示,在直角梯形OABC中,CB∥OA,CB=8,OC=8,∠OAB=45°
(1)求点A、B、C的坐标;
(2)求△ABC的面积.
如图,在梯形ABCD中,AB∥CD,∠ABC=90°,DC=BC,E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,
(1)证明:CE⊥CF;
(2)当BE:CE=1:2,∠BEC=135°时,求sin∠EBF的值.
第一页
上一页
40
41
42
43
44
下一页
最后一页
896289
896290
896291
896292
896293
896294
896295
896296
896297
896298