数学
(2010·陕西)问题探究:
(1)请你在图①中做一条直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=BC=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处.为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的两部分,你认为直线l是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.
(2008·义乌市)如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、A
D上,将△AEF沿EF翻折,点A的落点记为P.
(1)当AE=5,P落在线段CD上时,PD=
2
2
;
(2)当P落在直角梯形ABCD内部时,PD的最小值等于
4
5
-8
4
5
-8
.
(2007·江西)如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.
(1)观察图形,写出图中两个不同形状的特殊四边形;
(2)选择(1)中的一个结论加以证明.
(2005·新疆)如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,求梯形ABCD的高CD的长.(结果精确到0.1cm)
(2013·杭州一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.
(1)求证△CBE≌△CFE;
(2)若CD=a,求四边形BCFE的面积.
(2012·宜昌二模)如图,在直角梯形ABCD中,∠B=∠C=90°,M是BC的中点,
(1)请你作出点M(要求用尺规作图,保留痕迹,不写作法和证明);
(2)连接DM并延长,与AB的延长线交于点E,求证:△DCM≌△EBM.
(2012·新昌县模拟)如图,直角梯形ABCD中,AD∥BC,∠ADC=∠BAC=90°,AD=CD=6,E是AD上一点,且AE=4,EF⊥AC,垂足为O,交AD,BC于点E,F.
(1)求证:四边形ABFE为平行四边形;
(2)求OF的长;
(3)若点P,M分别是AC,FC的中点,PK⊥PM,交CD于点K,求
PK
CK
的值.
(2012·泰州一模)如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E.
(1)求证:DA=DE;
(2)若AD=2,BC=6,求AB.
(2012·门头沟区一模)阅读下面材料:
小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.
小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.
请回答:在图2中,∠GAF的度数是
45°
45°
.
参考小伟得到的结论和思考问题的方法,解决下列问题:
(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=
58
7
58
7
.
(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=
x+1
x+1
.
(2011·郑州模拟)如图所示,在直角梯形ABCD中.AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.
(1)如图1示,猜想AB与BC的数量关系,并说明理由;
(2)如图2所示,若F为线段CD上一点,∠FBC=30°,连接AF,请判断△BAF的形状,并说明理由.
第一页
上一页
39
40
41
42
43
下一页
最后一页
896279
896280
896281
896282
896283
896284
896285
896286
896287
896288