数学
已知两条线段的长分别为15和8,当第三条线段取整数
17
17
时,这三条线段能围成一个直角三角形.
已知|x-13|+|y-12|+(z-5)
2
=0,则由此为三边的三角形是
直角
直角
三角形.
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
已知△ABC中,BC=6,AB=8,AC=10,O为三条角平分线的交点,则O到各边的距离为
2
2
.
(2010·南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.
(2008·湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名
的定理,这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
如图,利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明
数学中一个十分著名的定理,这个定理结论的数学表达式是
a
2
+b
2
=c
2
a
2
+b
2
=c
2
.
如图是用硬纸板做成的四个全等的直角三角形(两
直角边长分别是a、b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.
第一页
上一页
161
162
163
164
165
下一页
最后一页
577403
577404
577405
577406
577407
577408
577409
577410
577411
577412