数学
如图,△ABD与△CBD是全等的正三角形,AB=2,E为AB的中点,P为BD上的动点,则PA+PE的最小值为
7
7
.
如图所示.在一条河流的北侧,有A,B两处牧场.每天清晨,羊群从A出发,到河边饮水后,折到B处放牧吃草.请问,饮水处应设在河流的什么位置,从A到B羊群行走的路程最短?
平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.
从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)
探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)
探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)
探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)
如图,矩形ABCD中,AB=20cm,BC=10cm,若在AC、AB上各取一点M、N,使BM+MN的值最小,求这个最小值.
(2012·兰州)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )
在直角坐标系中,已知点A(-3,2),B(2,-4),在x轴上找一点C,使AC+BC最短,则点C的坐标为( )
在平面直角坐标系中,已知A(1,1)、B(3,5),要在坐标轴上找一点P,使得△PAB的周长最小,则点P的坐标为( )
如图,已知∠MON=50°,P为∠MON内一定点,点A为OM上的点,B为ON上的点,当△PAB的周长取最小值时,则∠APB度数是
80°
80°
.
如图,点P在∠AOB内,且OP=15cm,点E、F是OA、OB上任意一点,若∠AOB=30°,则△PEF的周长最小值是
15
15
cm.
如图,C为线段BD上一个动点,分别过B、D两点作AB⊥BD于B点、ED⊥BD于D点,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x,则BC=8-x,那么CE=
1+
x
2
,AC=
25+(8-x)
2
,那么AC+CE=
25+(8-x)
2
+
1+
x
2
,则AC+CE的最小值是
10
10
.
第一页
上一页
4
5
6
7
8
下一页
最后一页
69428
69430
69432
69434
69436
69439
69441
69443
69445
69447