试题
题目:
在直角坐标系中,已知点A(-3,2),B(2,-4),在x轴上找一点C,使AC+BC最短,则点C的坐标为( )
A.
(0,-
5
8
)
B.
(-
4
3
,0)
C.(-4,0)
D.
(
4
3
,0)
答案
B
解:设直线AB解析式为y=kx+b,
将A(-3,2),B(2,-4)代入,得
-3k+b=2
2k+b=-4
,
解得
k=-
6
5
b=-
8
5
,
∴y=-
6
5
x-
8
5
,
当y=0时,x=-
4
3
,
即C(-
4
3
,0).
故选B.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;坐标与图形性质.
点A(-3,2)在第二象限,点B(2,-4)在第四象限,连接AB交x轴于C点,C点即为所求.根据A、B两点的坐标求直线AB的解析式,再求C点坐标.
本题考查了坐标系中求最短路线问题.当已知两点在x轴两侧时,直接连接这两点,与x轴的交点即为所求;当已知两点在x轴同侧时,作其中一个点关于x轴的对称点,将对称点与另外一个点连接,与x轴的交点即为所求.
计算题;压轴题.
找相似题
(2009·抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
(2013·宜兴市一模)如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
3
),(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是( )
如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是( )
(2010·淮北模拟)如图,已知A、B两村分别距公路l的距离AA’=10km,BB’=40km,且A’B’=50km.在公路l上建一中转站P使AP+BP的最小,则AP+BP的最小值为( )
如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=( )时,AC+BC的值最小.