试题
题目:
完成下面的证明过程
已知:如图,AB∥CD,AE⊥BD于E,CF⊥BD于F,BF=DE.
求证:△ABE≌△CDF.
证明:∵AB∥CD,∴∠1=
∠2
∠2
.(两直线平行,内错角相等 )
∵AE⊥BD,CF⊥BD,
∴∠AEB=
∠CFD
∠CFD
=90°.
∵BF=DE,∴BE=
DF
DF
.
在△ABE和△CDF中,
∴△ABE≌△CDF
(ASA)
(ASA)
.
答案
∠2
∠CFD
DF
(ASA)
证明::∵AB∥CD,
∴∠1=∠2(两直线平行,内错角相等),
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵BF=DE,
∴BE=DF,
在△ABE和△CDF中,
∠1=∠2
BE=DF
∠AEB=∠CFD
,
∴△ABE≌△CDF(ASA).
故答案为:∠2;∠CFD;DF;∠2,DF,∠CFD;(ASA).
考点梳理
考点
分析
点评
专题
全等三角形的判定.
根据AB∥CD,可得∠1=∠2,根据AE⊥BD于E,CF⊥BD于F,可得∠AEB=∠CFD=90°,然后根据BF=DE,可得BE=DF,利用ASA可证明△ABE≌△CDF.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
推理填空题.
找相似题
如图,△AOC中,O为坐标原点,点A的坐标为(-4,0),点C的坐标为(1,2),如果要使△AOD与△AOC全等,那么点D的坐标是
D(1,-2);D′(-5,2);D″(-5,-2)
D(1,-2);D′(-5,2);D″(-5,-2)
.
如图,AB=DC,请补充一个条件
∠ABD=∠CDB
∠ABD=∠CDB
,使△BAD≌△DCB.
如图,AO=CO,则至少需加入条件
BO=DO
BO=DO
,可证得△AOB≌△COD.
如图,AD是△ABC的高,只要再添加一个条件(角相等或边相等),就可说明△ABD≌△ACD(AAS),那么你添加的条件是
AB=AC
AB=AC
.
如图,已知AB=AC,BD与CE交于点F,请你添加一个条件
∠B=∠C
∠B=∠C
或
AD=AE
AD=AE
或
∠B=∠C
∠B=∠C
使△ABD≌△ACE.