试题
题目:
如图,已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,
若要以“SAS”为依据,还缺条件
AB=DE
AB=DE
;
若要以“ASA”为依据,还缺条件
∠ACB=∠DFE
∠ACB=∠DFE
;
若要以“AAS”为依据,还缺条件
∠A=∠D
∠A=∠D
,并说明理由.
答案
AB=DE
∠ACB=∠DFE
∠A=∠D
解:AB=DE,∠ACB=∠DFE,∠A=∠D.
①若添加条件是AB=DE,利用SAS可证两个三角形全等;
②若添加条件是∠ACB=∠DFE,利用ASA可证两个三角形全等;
③若添加条件是∠A=∠D,利用AAS可证两个三角形全等;
故分别填AB=DE,∠ACB=∠DFE,∠A=∠D.
考点梳理
考点
分析
点评
专题
全等三角形的判定.
由于已知一组对应角相等,一组对应边相等,若利用SAS证全等,那么所需的另一边应该是已知角的夹边相等;若利用ASA证全等,则所需的另一角是以已知边为边的另一个角相等;若利用AAS证全等,所需的另一角是已知边的对角相等.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
开放型.
找相似题
如图,△AOC中,O为坐标原点,点A的坐标为(-4,0),点C的坐标为(1,2),如果要使△AOD与△AOC全等,那么点D的坐标是
D(1,-2);D′(-5,2);D″(-5,-2)
D(1,-2);D′(-5,2);D″(-5,-2)
.
如图,AB=DC,请补充一个条件
∠ABD=∠CDB
∠ABD=∠CDB
,使△BAD≌△DCB.
如图,AO=CO,则至少需加入条件
BO=DO
BO=DO
,可证得△AOB≌△COD.
如图,AD是△ABC的高,只要再添加一个条件(角相等或边相等),就可说明△ABD≌△ACD(AAS),那么你添加的条件是
AB=AC
AB=AC
.
如图,已知AB=AC,BD与CE交于点F,请你添加一个条件
∠B=∠C
∠B=∠C
或
AD=AE
AD=AE
或
∠B=∠C
∠B=∠C
使△ABD≌△ACE.