试题
题目:
如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有( )
A.2对
B.3对
C.4对
D.5对
答案
C
解:∵AD平分∠BAC,
∴∠BAD=∠CAD,
在△ABD与△ACD中,
AB=AC
∠BAD=∠CAD
AD=AD
,
∴△ABD≌△ACD(SAS),
∴BD=CD,∠B=∠C,∠ADB=∠ADC,
又∠EDB=∠FDC,
∴∠ADE=∠ADF,
∴△AED≌△AFD,△BDE≌△CDF,△ABF≌△ACE.
∴△AED≌△AFD,△ABD≌△ACD,△BDE≌△CDF,△ABF≌△ACE,共4对.
故选C.
考点梳理
考点
分析
点评
全等三角形的判定.
认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.
本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
找相似题
如图,△AOC中,O为坐标原点,点A的坐标为(-4,0),点C的坐标为(1,2),如果要使△AOD与△AOC全等,那么点D的坐标是
D(1,-2);D′(-5,2);D″(-5,-2)
D(1,-2);D′(-5,2);D″(-5,-2)
.
如图,AB=DC,请补充一个条件
∠ABD=∠CDB
∠ABD=∠CDB
,使△BAD≌△DCB.
如图,AO=CO,则至少需加入条件
BO=DO
BO=DO
,可证得△AOB≌△COD.
如图,AD是△ABC的高,只要再添加一个条件(角相等或边相等),就可说明△ABD≌△ACD(AAS),那么你添加的条件是
AB=AC
AB=AC
.
如图,已知AB=AC,BD与CE交于点F,请你添加一个条件
∠B=∠C
∠B=∠C
或
AD=AE
AD=AE
或
∠B=∠C
∠B=∠C
使△ABD≌△ACE.