试题
题目:
如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.
答案
证明:
∵AC∥EF,
∴∠CAB=∠FED,
∵AE=BD,
∴AE+EB=BD+EB,
即AB=ED,
又∵AC=EF,
∴△ABC≌△EDF.
证明:
∵AC∥EF,
∴∠CAB=∠FED,
∵AE=BD,
∴AE+EB=BD+EB,
即AB=ED,
又∵AC=EF,
∴△ABC≌△EDF.
考点梳理
考点
分析
点评
专题
全等三角形的判定;平行线的性质.
由AC∥EF,易得∠CAB=∠FED,而AE=BD,根据等式性质易得AB=ED,再结合AC=EF,利用SAS可证△ABC≌△EDF.
本题考查了全等三角形的判定和性质,解题的关键是利用SAS进行证明.
证明题.
找相似题
如图,△AOC中,O为坐标原点,点A的坐标为(-4,0),点C的坐标为(1,2),如果要使△AOD与△AOC全等,那么点D的坐标是
D(1,-2);D′(-5,2);D″(-5,-2)
D(1,-2);D′(-5,2);D″(-5,-2)
.
如图,AB=DC,请补充一个条件
∠ABD=∠CDB
∠ABD=∠CDB
,使△BAD≌△DCB.
如图,AO=CO,则至少需加入条件
BO=DO
BO=DO
,可证得△AOB≌△COD.
如图,AD是△ABC的高,只要再添加一个条件(角相等或边相等),就可说明△ABD≌△ACD(AAS),那么你添加的条件是
AB=AC
AB=AC
.
如图,已知AB=AC,BD与CE交于点F,请你添加一个条件
∠B=∠C
∠B=∠C
或
AD=AE
AD=AE
或
∠B=∠C
∠B=∠C
使△ABD≌△ACE.