试题
题目:
如图,用直尺和圆规作出∠AOB的角平分线OC的依据是( )
A.(SSS)
B.(SAS)
C.(ASA)
D.(AAS)
答案
A
解:由作图知:OB=OA,BC=AC,OC=OC(公共边),即三边分别对应相等(SSS),△OBC≌△OAC,
故选A.
考点梳理
考点
分析
点评
全等三角形的判定;作图—基本作图.
熟练掌握三角形全等的判定条件是解答此题的关键.易知:OB=OA,BC=AC,OC=OC,因此符合SSS的条件.
本题考查的是全等三角形的判定,要清楚作图时作出的线段OB与OA、BC与AC是相等的.
找相似题
如图,△AOC中,O为坐标原点,点A的坐标为(-4,0),点C的坐标为(1,2),如果要使△AOD与△AOC全等,那么点D的坐标是
D(1,-2);D′(-5,2);D″(-5,-2)
D(1,-2);D′(-5,2);D″(-5,-2)
.
如图,AB=DC,请补充一个条件
∠ABD=∠CDB
∠ABD=∠CDB
,使△BAD≌△DCB.
如图,AO=CO,则至少需加入条件
BO=DO
BO=DO
,可证得△AOB≌△COD.
如图,AD是△ABC的高,只要再添加一个条件(角相等或边相等),就可说明△ABD≌△ACD(AAS),那么你添加的条件是
AB=AC
AB=AC
.
如图,已知AB=AC,BD与CE交于点F,请你添加一个条件
∠B=∠C
∠B=∠C
或
AD=AE
AD=AE
或
∠B=∠C
∠B=∠C
使△ABD≌△ACE.