试题

题目:
青果学院(2011·三门峡二模)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为(  )



答案
B
青果学院解:如图所示,设PF⊥CD,
∵BP=FP,
由翻折变换的性质可得BP=B′P,
∴FP=B′P,
∴FP⊥CD,
∴B′,F,P三点构不成三角形,
∴F,B′重合分别延长AE,DC相交于点G,
∵AB平行于CD,
∴∠BAG=∠AGC,
∵∠BAG=∠B′AG,AGC=∠B′AG,
∴GB′=AB′=AB=5,
∵PB′(PF)⊥CD,
∴PB′∥AD,
∴△ADG∽△PB′G,
∵Rt△ADB′中,AB′=5,AD=4,
∴DB′=3,DG=DB′+B′G=3+5=8,
∴△ADG与△PB′G的相似比为8:5,
∴AD:PB′=8:5,
∵AD=4,
∴PB′=2.5,即相等距离为2.5.
故选B.
考点梳理
翻折变换(折叠问题).
先根据题意画出图形,由翻折变换的性质得出F、B′重合,分别延长AE,DC相交于点G,由平行线的性质可得出GB′=AB′=AB=5,再根据相似三角形的判定定理得出△ADG∽△PB′G,求出其相似比,进而可求出答案.
本题考查的是图形翻折变换的性质及相似三角形的判定与性质,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.
压轴题;探究型.
找相似题