试题
题目:
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.
答案
8
解:∵由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8.
故答案为:8.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等
本题考查了翻折变换的知识,利用折叠的性质得出△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC是解题关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,把矩形ABCD纸片折叠,使点D与点B重合,则四边形BEDF是
菱
菱
形;若AB=8,BC=6,则折痕EF=
15
2
15
2
.