试题
题目:
(2008·海口一模)如图,AD是在Rt△ABC斜边BC上的高,将△ADC沿AD所在直线折叠,点C恰好落在BC的中点处,则∠B等于( )
A.25°
B.30°
C.45°
D.60°
答案
B
解:△ADC沿AD所在直线折叠,点C恰好落在BC的中点处,则AC=AE,
∵E为BC中点,△ABC是直角三角形,
∴AE=BE=CE,
∴AC=AE=EC,
∴△AEC是等边三角形.
∴∠C=60°,
∴∠B=30°.
故选B.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
先根据图形折叠的性质得出AC=AE,再由直角三角形斜边的中线等于斜边的一半即可得出BE=CE,进而可判断出△AEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.
本题考查了翻折变换(折叠问题).解题时利用了直角三角形的性质,等边三角形的判定及图形折叠等知识.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.