试题
题目:
如图,把一长方形纸片ABCD沿EG折叠后,点A、B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是( )
A.40°
B.50°
C.65°
D.80°
答案
D
解:∵长方形纸片ABCD沿EG折叠,∴四边形ABGE与四边形B'GEA′重合,
∴∠1=∠B'GE=130°,
∠FGE=180°-∠1=180°-130°=50°,
∴∠3=∠B'GE-∠FGE=130°-50°=80°
∵AE∥BG,∴A'E∥B'G,
∴∠2=∠3=80°.
故选D.
考点梳理
考点
分析
点评
专题
平行线的性质;翻折变换(折叠问题).
GE为折痕,四边形ABGE与四边形B'GEA′重合,∴BG∥AE,∴∠2=∠3,∠1=∠B'GE=130°,再利用平角关系可求得∠2=80°.
本题考查了平行线的性质及翻折变换问题;折叠问题关键是找准重合的部分,从而找出相等的边,相等的角,然后结合题中、图形上的具体已知得到结论.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.