试题
题目:
(2012·武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是( )
A.7
B.8
C.9
D.10
答案
C
解:∵△DEF由△DEA翻折而成,
∴EF=AE=5,
在Rt△BEF中,
∵EF=5,BF=3,
∴BE=
EF
2
-
BF
2
=
5
2
-
3
2
=4,
∴AB=AE+BE=5+4=9,
∵四边形ABCD是矩形,
∴CD=AB=9.
故选C.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
先根据翻折变换的性质得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的长,再根据AB=AE+BE求出AB的长,再由矩形的性质即可得出结论.
本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
探究型.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.