试题
题目:
如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=
1
2
∠MFE.则∠MFB=( )
A.30°
B.36°
C.45°
D.72°
答案
B
解:由折叠的性质可得:∠MFE=∠EFC,
∵∠MFB=
1
2
∠MFE,
设∠MFB=x°,则∠MFE=∠EFC=2x°,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+2x+2x=180,
解得:x=36°,
∴∠MFB=36°.
故选B.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
由折叠的性质可得:∠MFE=∠EFC,又由∠MFB=
1
2
∠MFE,可设∠MFB=x°,然后根据平角的定义,即可得方程:x+2x+2x=180,解此方程即可求得答案.
此题考查了折叠的性质与平角的定义.此题比较简单,解题的关键是注意方程思想与数形结合思想的应用.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c.则△GFC的面积是
2
2
cm
2
.
如图,将△ABC沿直线AC翻折得到△AB′C,若∠BAC=25°,则∠AB′B=
65
65
度.
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=
45
45
度.
如图,在△ABC中,∠B=90°.AB=3,BC=5.将△ABC折叠,使点C与点A重合,拆痕为DE,则△ABE的周长为
8
8
.